
1

2

The HHL Algorithm

for Solving System of Linear Equations

Azim Farghadan

October 2024

3

Objectives of the Lecture

 Why quantum computing is necessary?

 What is the HHL algorithm?

 Simulation of quantum algorithms.

4

Why quantum computing is necessary?

6

The Need for Quantum Computation

7

The Need for Quantum Computation

8

The Need for Quantum Computation

1981:Richard Feynman proposed the idea of creating machines based on the laws of quantum

mechanics instead of the laws of classical physics.

9

The Need for Quantum Computation

10

Key Concepts in Quantum Computing

|> = 𝟏|0> + 𝟐|1>

Where 𝟏 and 𝟐 are complex numbers and |𝟏|
2+ |𝟐|

2= 1

11

Key Concepts in Quantum Computing

12

Key Concepts in Quantum Computing

13

Quantum circuits and Quantum Algorithm

• In the quantum circuit model, the wires represent qubits and the gates represent both unitary

operations and measurements.

14

Quantum circuits and Quantum Algorithm

• In the quantum circuit model, the wires represent qubits and the gates represent both unitary

operations and measurements.

15

Quantum physics timeline

16

Which companies

17

What does a quantum computer look like?

18

An Importance of Quantum Computation

The

classification

of different

types of

problems and

their

applications.

Type of problem Useful for Industrial applications

Combinatorial

optimization

Minimizing or maximizing an objective

function, such as finding the most

efficient allocation of resources or the

shortest distance between a set of points

(e.g., the Traveling Salesman Problem).

• Network optimization

• Supply chain optimization

• Portfolio optimization

Differential

equation

Modeling the behavior of complex

systems involving fundamental physical

laws (e.g., Navier-Stokes equations for

fluid dynamics and chemistry).

• Computational fluid dynamics

simulation

• Molecular simulation for the

discovery of specialized materials

and drugs.

Linear

algebra

Machine learning techniques such as

clustering, pattern matching, and

principal component analysis, as well as

support vector machines, which have

widespread applications in industry.

• Risk management in finance

• DNA sequence classification

• Marketing

Factoring

Cryptography and computer security,

where today's most common protocols

(such as RSA) rely on the feasibility (for

classical computers) of factoring the

product of two large prime numbers.

• Codebreaking and cryptanalysis

(e.g., for government agencies).

19
19

The impact

of quantum

computing

on various

industrial

problems

AerospaceAutomotive Chemical Materials Financial Services Biological Sciences

Leading use cases

of quantum

computing being

explored by

industry.

The added value

generated by

quantum computing

is estimated to be

$700 billion.

$300 billion.

Potential

Benefits

$200 billion.$120 billion.$80 billion. ...

• Traffic flow management

• Automotive design

optimization

• Crash simulation

• Battery manufacturing

• Industrial efficiency

• Supply chain optimization

• Air traffic control

•Aircraft design optimization

•Fleet, crew, and fuel

optimization

•Cargo loading optimization

•Supply chain optimization

•Chemical reaction

modeling and

optimization

•Battery manufacturing

•Molecular simulation

and discovery

•Risk management

•Dynamic portfolio

management

•Derivatives pricing

•Detection of financial

data manipulation

•Biological target

identification

•Evidence synthesis for

identification and

optimization

•Drug interaction detection

•Disease diagnosis

•Clinical trial optimization

•Efficient automotive

production and sales

•Designing better materials

•Entering new markets

•Efficient aircraft

and satellite

manufacturing

•Entering new markets

through new materials

•Producing efficient

products

•Better understanding of

risk exposure

•Improved portfolio returns

•Lower fraud risk

•Faster drug production

•Efficient drug development

•Higher return on investment

•Entering new markets

20

What is the HHL algorithm?

21

Applications of System of Linear Equations

4𝑥 + 3𝑦 = 7
𝑥 − 2𝑦 = −1
3𝑥 + 5𝑦 = 8

 As a result linear system problem (LSP) can be represented as the following:

𝑨𝒙 = 𝒃

22

Applications of System of Linear Equations

23

Applications of System of Linear Equations

Machin
learning

Partial
Differential
Equation

Leak
Detection an
Localization

Optimization

Graph
Analysis

24

Applications of System of Linear Equations

25

System of Linear Equations

26

Iterative Method for Solving System of Linear Equations

Various selections of the matrices E and F lead to different iterative methods.

27

The Harrow-Hassidim-Lloyd Algorithm (HHL)

This is a quantum algorithm for solving a system of linear equations.

This algorithm is designed based on quantum computer.

This algorithm uses the quantum phase estimation and Fourier transfer.

This algorithm provides an exponential speedup.

Harrow-Hassidim-Lloyd (HHL)

28

The HHL Algorithm

 A linear system problem (LSP) can be represented as the following:

𝑨𝒙 = 𝒃

Where A is a 𝑁𝑏 ∗ 𝑁𝑏 Hermitian matrix.

𝒙 = 𝑨−𝟏𝒃 𝟎 𝑨
𝑨ϯ 𝟎

 For simplicity, it is assumed 𝑁𝑏 = 2nb.

29

The HHL Algorithm Main Idea

 Since A is a Hermitian matrix, it has a spectral decomposition as follows:

𝐴 =

𝑖=0

2𝑛𝑏−1

𝜆𝑖 𝑢𝑖 𝑢𝑖 , 𝜆𝑖 ∈ 𝑅 → 𝐴−1=

𝑖=0

2𝑛𝑏−1

𝜆𝑖
−1 𝑢𝑖 𝑢𝑖

 Accordingly, the right side of the equation can be written as follows based on the eigenvalues:

|𝑏⟩ =

𝑗=0

2𝑛𝑏−1

𝑏𝑗 𝑢𝑗 ,

𝑗=0

2𝑛𝑏−1

𝑏𝑗
2
= 1

|𝑥⟩ = 𝐴−1|𝑏⟩ =

𝑖=0

2𝑛𝑏−1

𝜆𝑖
−1𝑏𝑖 𝑢𝑖 ,

𝑖=0

2𝑛𝑏−1

𝜆𝑖
−1𝑏𝑗

2
= 1

30

The HHL Algorithm

 The below figure shows the schematic of the HHL.

State

preparation

RY
Measur-

ement

QFTIQFT

Quantum Phase Estimation (QPE) Inverse Quantum Phase Estimation (QPE)

1 1

𝝍0 =|0…0⟩𝑏|0…0⟩𝑐|0⟩𝑎 = 0 ⊗𝑛𝑏 0 ⊗𝑛𝑐 0

31

The HHL Algorithm (Loading)

State

preparation

RY
Measur-

ement

QFTIQFT

Quantum Phase Estimation (QPE) Inverse Quantum Phase Estimation (QPE)

1 1

b =

𝛽0
𝛽1
⋮

𝛽𝑛𝑏−1

⟺ 𝛽0 |0⟩ +𝛽1 |1⟩ +…+𝛽𝑛𝑏−1 𝑛𝑏 − 1 = |𝑏⟩

𝝍1 = |𝑏⟩𝑏|0…0⟩𝑐|0⟩𝑎

32

The HHL Algorithm (Phase Estimation)

𝑼|𝒃⟩ = 𝒆𝟐𝝅𝒊∅|𝒃⟩

Since the relationship between U and A is U= 𝑒𝑖𝐴𝑡, assuming that |𝑏⟩ is the eigenvector of U:

Therefore, in QPE, qubits of stability c are used to represent the phase information U and the

accuracy depends on the number of qubits n.

𝑼 𝒖𝒋 = 𝒆𝒊𝝀𝒋𝒕 𝒖𝒋

By equalizing 2𝜋𝑖∅ and 𝑖𝜆𝑗𝑡 angle ∅ = λ𝑗𝑡 2𝜋 as a result by considering 𝜆𝑗 = 𝜆𝑗𝑡 2π:

𝝍4 = 𝑢𝑗 | 𝜆𝑗⟩|0⟩𝑎

33

The HHL Algorithm (Phase Estimation)

State

preparation

RY
Measur-

ement

QFTIQFT

Quantum Phase Estimation (QPE) Inverse Quantum Phase Estimation (QPE)

1 1

𝝍1 = |𝑏⟩𝑏|0…0⟩𝑐|0⟩𝑎

𝝍4 =

𝑗=0

2𝑛𝑏−1

𝑏𝑗 𝑢𝑗 | 𝜆𝑗⟩ 0 𝑎

34

By applying the rotation gate along the y axis, we have:

The HHL Algorithm (Eigen Value Inversion)

𝝍5 =

𝑗=0

2𝑛𝑏−1

𝑏𝑗 𝑢𝑗 𝜆𝑗 (1 −
𝐶2

 𝜆𝑗
2 0 𝑎 +

𝐶

 𝜆𝑗
1 𝑎)

If the ancilla qubit is |0⟩, the result is discarded and the calculation is repeated until the

measurement is |1⟩. Therefore, the desired final wave function is as follows:

𝝍6 =
1

 𝑗=0
2𝑛𝑏−1 𝑏𝑗𝐶

 𝜆𝑗

2

𝑗=0

2𝑛𝑏−1

𝑏𝑗 𝑢𝑗 𝜆𝑗
𝐶

 𝜆𝑗
1 𝑎

35

State

preparation

RY
Measur-

ement

QFTIQFT

Quantum Phase Estimation (QPE) Inverse Quantum Phase Estimation (QPE)

1 1

𝝍1 = |𝑏⟩𝑏|0…0⟩𝑐|0⟩𝑎

𝝍4 =

𝑗=0

2𝑛𝑏−1

𝑏𝑗 𝑢𝑗 | 𝜆𝑗⟩ 0 𝑎

The HHL Algorithm (Eigen Value Inversion)

𝝍6 =
1

 𝑗=0
2𝑛𝑏−1 𝑏𝑗𝐶

 𝜆𝑗

2

𝑗=0

2𝑛𝑏−1

𝑏𝑗 𝑢𝑗 𝜆𝑗
𝐶

 𝜆𝑗
1 𝑎

36

The HHL Algorithm (Uncommuted Step)

Apply this stage according to the entanglement of the b and | 𝜆𝑗⟩:

𝝍9 =
1

2
𝑛
2 𝑗=0

2𝑛𝑏−1 𝑏𝑗
𝜆𝑗

2
𝑥 0 0

⨂𝑛 1 𝑎

 𝑖=0
2𝑛𝑏−1 𝜆𝑖

−1𝑏𝑖 = 1

𝝍9 = 𝑥 0 0
⨂𝑛 1 𝑎

Since:

As a result:

37

Implementation of the HHL algorithm on Qiskit platform

print('naive state:')

print(naive_hhl_solution.state)

print('classical Euclidean norm:', classical_solution.euclidean_norm)

print('naive Euclidean norm:', naive_hhl_solution.euclidean_norm)

classical Euclidean norm: 1.1858541225631423

naive Euclidean norm: 1.185854122563138

38

Implementation of the HHL algorithm on Qiskit platform

from qiskit.algorithms.linear_solvers.numpy_linear_solver

import NumPyLinearSolver

matrix = np.array([[1, -1/3], [-1/3, 1]])

vector = np.array([1, 0])

naive_hhl_solution = MY_HHL().solve(matrix, vector)

classical_solution = NumPyLinearSolver().solve(matrix, vector / np.linalg.norm(vector))

print('classical state:', classical_solution.state)

The accuracy of HHl algorithm has been investigated by solving two sets of equations.

First example: Solving a 2*2 system of equations:

39

Implementation of the HHL algorithm on Qiskit platform

#define matrix and vector for solve

matrix = np.array([[0.0457968, -0.0309112, 0.0122894,0], [-0.0309112, 0.0520833, -

0.0126651,0],[0.0122894, -0.0126651, 0.457968,0],[0,0,0,1]])

vector = np.array([0.000049, 0.0019531 , 0.00049,0])

naive_hhl_solution = MyHHL().solve(matrix, vector)

classical_solution = NumPyLinearSolver().solve(matrix, vector / np.linalg.norm(vector))

print('classical state:', classical_solution.state)

Second example: The solution of a 3x3 equation device has been investigated.

40

Implementation of the HHL algorithm on Qiskit platform

print('naive state:')

print(naive_hhl_solution.state)

41

Implementation of the HHL algorithm on Qiskit platform

print('classical Euclidean norm:', classical_solution.euclidean_norm)

print('naive Euclidean norm:', naive_hhl_solution.euclidean_norm)

classical Euclidean norm: 38.42922665790783

naive Euclidean norm: 38.43989823369082

from qiskit.quantum_info import Statevector

naive_sv = Statevector(naive_hhl_solution.state).data

naive_full_vector = np.array([naive_sv[512], naive_sv[513],naive_sv[514], naive_sv[515]])

print('naive raw solution vector:', naive_full_vector)

naive raw solution vector: [-2.73876640e-01-2.73876640e-01j -4.00967262e-01-4.00967262e-01j

-1.04173614e-02-1.04173614e-02j 3.60496340e-16-4.84428988e-17j]

print('full naive solution vector:', -

naive_hhl_solution.euclidean_norm*naive_full_vector/np.linalg.norm(naive_full_vector))

print('classical state:', classical_solution.state)

full naive solution vector: [2.16760881e+01 3.17347318e+01 8.24486687e-01 -2.85316427e-14]

classical state: [21.70665637 31.7008716 0.82539112 0.]

42

Time Complexity of HHL and classical algorithm

Matrix size
classic

operation

#Quantum

operation

10*10 103 = 1000 log10 10 =1

20*20 203 = 8000 log10 20 =1.3

30*30 303 = 1000 log10 30 =1.47

40*40 403 = 1000 log10 40 =1.6

50*50 503 = 1000 log10 50 =1.69

100*100 1003 = 1𝑀 log10 100 =2

1000*1000 10003 = 1𝐺 log10 1000 =3

Comparing the solving speed of HHL algorithm with increasing problem size (n)

43

Qiskit toolkit and quantum algorithm simulation

44

Quantum Computing Software Of 2024

45

Quantum Computing Software Of 2024

46

Qiskit Overview

47

Installation

• Python / Anaconda (highly recommended for learning)

• pip install qiskit

• pip install numpy

• pip install mathplot

• pip install histogram

48

Qiskit Code Example

49

References

[1] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information: Cambridge university press, 2010.

[2] Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological

Review 65, 386 (1958).

[3] Wittek, P. Quantum Machine Learning: What Quantum Computing Means to Data Mining (Academic Press, New York, NY,

USA, 2014).

[4] Bordley, R. F. 1998. Quantum Mechanical and Human Violations of Compound Probability Principles: Toward a

Generalized Heisenberg Uncertainty Principle. Operations Research 46: 923-926.

[5] Busemeyer, J.R., Bruza, P.D.: Quantum Models of Cognition and Decision. Cambridge University Press, Cambridge (2012)

[6] H. J. Morrell Jr and H. Y. Wong, "Step-by-Step HHL Algorithm Walkthrough to Enhance the Understanding of Critical

Quantum Computing Concepts," arXiv preprint arXiv:2108.09004, 2021.

پایان

سپاس از توجه شما

51

Quantum Fourier transform

• Given these two gates, a circuit that implements an n-qubit QFT is shown below.

• The circuit operates as follows. We start with an n-qubit input state |𝑥1𝑥2…𝑥𝑛⟩.

1. After the first Hadamard gate on qubit 1, the state is transformed from the input state to

https://github.com/Qiskit/textbook/blob/aebdd2bc86ddb7a79dd8441d52c839d312ffafbb/notebooks/ch-algorithms/#qfteqn

52

Quantum Fourier transform

• Let’s see how this looks:

53

Quantum Fourier transform

• Great! This is the first part of our QFT. Now we have correctly rotated the most significant qubit, we need to

correctly rotate the second most significant qubit.

54

Quantum Fourier transform

• Finally, we need to add the swaps at the end of the QFT function to match the definition of the QFT.

55

Quantum Fourier transform

• We now want to demonstrate this circuit works correctly.

• To do this we must first encode a number in the computational basis.

56

Quantum Fourier transform

پایان

سپاس از توجه شما

