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Introduction to Binary Optimization Problems

Binary Optimization Problems:

Decision variables xi ∈ {0, 1} or xi ∈ {−1, 1}.
The goal is to maximize or minimize an objective function.
Subject to constraints (optional) or unconstrained.

General Form:
min

x∈{0,1}n
f (x)

Common applications: scheduling, portfolio optimization, set
covering, etc.
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Relevance of Binary Optimization in Quantum Computing

Combinatorial Optimization: Many real-world problems in logistics,
finance, and machine learning involve binary optimization.

Quantum Binary Optimization: Quantum computers are uniquely
suited for exploring the exponentially large solution spaces of binary
optimization problems.

Quantum Speedup: Quantum algorithms can leverage superposition
and entanglement to explore multiple states in parallel, offering
potential speedups over classical methods.
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Classical vs. Quantum Binary Optimization

Classical Methods:

Brute Force: Exhaustive search of the solution space (exponential
time).
Branch-and-Bound: A divide-and-conquer approach, but can still be
computationally expensive for large problems.
Heuristic Methods: Simulated annealing, genetic algorithms (do not
guarantee optimal solutions).

Quantum Approaches:

Quantum Annealing: Uses quantum tunneling to escape local minima.
QAOA (Quantum Approximate Optimization Algorithm): Hybrid
quantum-classical algorithm designed for combinatorial optimization
problems.

Advantages: Quantum approaches offer the potential to explore large
solution spaces more efficiently than classical algorithms.
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Real-World Applications of Quantum Binary Optimization

Logistics:

Vehicle routing problems.
Supply chain optimization.

Finance:

Portfolio optimization.
Risk management.

Machine Learning:

Feature selection.
Training of large models (e.g., neural networks).

Artificial Intelligence: AI model tuning and optimization for
decision-making tasks.
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Summary of Quantum Binary Optimization

Binary optimization problems are central to many real-world
challenges in logistics, finance, and machine learning.

Quantum binary optimization offers significant potential advantages
due to the ability of quantum systems to explore large solution spaces
in parallel.

Quantum algorithms like quantum annealing and QAOA are
promising methods for solving complex binary optimization problems,
especially in the context of NP-hard problems.

Introduction to Quantum Optimization October 17, 2024 10 / 130



§ 2: Binary and Quadratic Optimization Problems
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Binary Optimization Problems

Binary Optimization Problems involve decision variables xi ∈ {0, 1} or
xi ∈ {−1, 1}.
The goal is to minimize or maximize an objective function subject to
constraints.

General Form:
min

x∈{0,1}n
f (x)

Examples: Max-Cut, Knapsack, Set Covering Problems.

Challenges:

NP-hard: The number of possible solutions grows exponentially with
the size of the problem.
Complex solution landscapes require advanced strategies for finding
global optima.
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Challenges in Binary Optimization

Exponential Search Space: With n binary variables, the solution space
has 2n possibilities.

Classical Approaches:

Heuristics (e.g., simulated annealing, genetic algorithms).
Exact methods like branch-and-bound or brute-force search are often
impractical for large problems.

Quantum Potential: Quantum algorithms can search large spaces
more efficiently through superposition and entanglement.
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Quadratic Unconstrained Binary Optimization (QUBO)

QUBO is a specific class of binary optimization where the objective
function is quadratic and unconstrained.

Problem Formulation:

min
x∈{0,1}n

xTQx + cT x

where:

Q is an n × n matrix representing interactions between variables.
c is a vector of linear coefficients.

QUBO models a wide range of combinatorial optimization problems.
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Importance of QUBO in Optimization

Flexibility: QUBO can represent many types of problems, including:

Portfolio optimization in finance.
Feature selection in machine learning.
Resource allocation in telecommunications.

Standard Form: The QUBO formulation is widely used because it can
easily be mapped to quantum systems such as quantum annealers and
gate-based models.

Optimization Task: By solving QUBO efficiently, many real-world
problems can be addressed.
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Classical vs Quantum Approaches to Solving QUBO

Classical Approaches:

Heuristic methods (e.g., simulated annealing, genetic algorithms) are
often used to approximate solutions.
Exact methods (e.g., brute force, branch-and-bound) are
computationally expensive.

Quantum Approaches:

Quantum Annealing: Solves QUBO by evolving the system to the
ground state of a quantum system.
QAOA (Quantum Approximate Optimization Algorithm): A hybrid
quantum-classical algorithm designed for combinatorial problems.
Advantage: Quantum algorithms explore multiple states in parallel,
offering speedups for large QUBO problems.
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Advantages of Quantum Approaches for QUBO

Parallelism: Quantum systems can explore a large number of possible
solutions simultaneously due to superposition.

Potential Speedups: In theory, quantum approaches like annealing or
QAOA can outperform classical methods for certain NP-hard
problems.

Scalability: Quantum algorithms have the potential to scale more
effectively for high-dimensional QUBO problems.

Real-world applications of quantum optimization are still in the early
stages but showing promise.
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Summary of Binary and Quadratic Optimization Problems

Binary Optimization Problems involve decision variables restricted to
binary values and are often NP-hard.

QUBO provides a flexible framework for a wide range of combinatorial
optimization problems.

Quantum algorithms offer the potential to solve large-scale QUBO
problems faster than classical approaches through parallel exploration
of solution spaces.
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QUBO Definition

The Unconstrained Quadratic Binary Optimization problem (QUBO)
is:

optimize H(x) = xTQx

Where:

x is an n-vector of binary variables,
Q is an n × n symmetric matrix of constants,
H(x) is called the energy of a QUBO solution x .
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Formula Expansion of QUBO

The objective function in QUBO (i.e., the energy of a QUBO solution
x) can be expanded as:

H(x) =
n∑

i=1

Qiix
2
i + 2

n∑
i=1

n∑
j=i+1

Qijxixj

This shows the quadratic and pairwise interaction terms in the QUBO
problem.
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Some well-known applications of QUBO

The QUBO model is highly flexible and can be applied to a wide
variety of optimization problems.
Some well-known applications include:

Maximum cut (Max-Cut)
SAT and Max Sat Problems
Spin Glass Problems
Graph Coloring Problems
Number Partitioning Problems
Maximum Independent Set Problems
Machine learning feature selection
Set Packing Problems
Graph partitioning
Quadratic Assignment Problems
Capital Budgeting Problems
Multiple Knapsack Problems
Task Allocation Problems (distributed computer systems)
Maximum Diversity Problems
P-Median Problems
Asymmetric and Symmetric Assignment Problems
General Linear 0/1 Problems
Quadratic Knapsack Problems
Constraint Satisfaction Problems (CSPs)
Portfolio Analysis Problems
Set Partitioning Problems
Warehouse Location Problems
Maximum Clique Problems
Linear Ordering Problems
Clique Partitioning Problems
Clustering Problems
Modularity Maximization
Correlation Clustering
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Symmetric Matrix in QUBO

The matrix Q in QUBO is symmetric, meaning that Qij = Qji for all i
and j .

This property simplifies the representation and computation of the
QUBO objective function.
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Basic QUBO Problem Formulation

Minimize/Maximize H(x) = xTQx : x binary

For a symmetric matrix Q

xTQx =
n∑

i=1

n∑
j=1

Qijxixj

where xi ∈ {0, 1}.
In linear + quadratic form:

H(x) = xTQx =
n∑

i=1

Qiixi +
n∑

i=1

n∑
j=i+1

2Qijxixj
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Matrix Representation in QUBO

The QUBO formulation is widely used in combinatorial optimization.

The binary nature of x simplifies many optimization problems.
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Conclusion: Basic QUBO Problem Formulation

The QUBO formulation involves minimizing or maximizing
H(x) = xTQx where x is a binary vector and Q is a symmetric
matrix.

Binary optimization problems have wide applications in combinatorial
optimization and can be tackled using both classical and quantum
approaches.
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§ 2.1: Examples of QUBO Formulation
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§ 2.1.1: The Max Cut Problem
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The Max Cut Problem

Given an undirected graph G (V ,E ), the Max Cut problem seeks to
partition V into two sets such that the number of edges between the
two sets (the cut) is as large as possible.

We can model this problem by introducing binary variables xi , where:

xi =

{
1 if vertex i is in one set,

0 if vertex i is in the other set.

The quantity (1− xi )(1− xj) identifies whether the edge (i , j) is in
the cut.
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Max Cut Problem Formulation

The problem of maximizing the number of edges in the cut can be
formulated as:

maximize
∑

(i ,j)∈E

1− xixj
2

This is an instance of a QUBO (Quadratic Unconstrained Binary
Optimization) problem:

maximize H(x) = xTQx
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Example: The Max Cut Problem

Consider an undirected graph with 5 vertices and 6 edges:

Vertices: 1, 2, 3, 4, 5
Edges: (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (2, 5)

The objective is to partition the vertices into two sets such that the
number of edges between the sets is maximized.
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QUBO Representation of Max Cut Problem

Explicitly taking into account all edges in the graph gives the
following formulation:

Q =


0 1 1 0 1
1 0 1 0 1
1 1 0 1 0
0 0 1 0 1
1 1 0 1 0


This takes the desired form of a QUBO problem: maximize
H(x) = xTQx .
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Solving the Max Cut Problem

Solving the QUBO model gives the optimal binary vector:

x = [0, 1, 1, 0, 0]

Hence, vertices 2 and 3 are in one set, while vertices 1, 4, and 5 are in
the other set.

The maximum cut value for this problem is 5.
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§ 2.1.2: The Number Partitioning Problem
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The Number Partitioning Problem

Partition a set of numbers into two subsets such that the subset sums
are as close to each other as possible.

We model this problem as a QUBO instance as follows:

Consider a set of numbers S = {s1, s2, ..., sn}.
Let xi = 1 if si is assigned to subset 1; 0 otherwise.

The sum for subset 1 is given by
∑

i xi si and the sum for subset 2 is
given by

∑
i (1− xi )si .
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The Number Partitioning Problem

We aim to minimize the difference between the sums of the two
subsets: (∑

i

xi si −
∑
i

(1− xi )si

)2

Simplifying the expression leads to:(
2
∑
i

xi si −
∑
i

si

)2

Dropping the additive and multiplicative constants, our QUBO
optimization problem becomes:

QUBO: minH(x) =
∑
i ,j

Qijxixj
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Numerical Example: The Number Partitioning Problem

Consider the set of eight numbers:

S = {25, 7, 13, 31, 42, 17, 21, 10}

From the previous development, the QUBO problem is:

minH(x) =
∑
i ,j

Qijxixj

with

Q =



−3525 175 325 775 1050 425 525 250
175 −1113 91 217 294 119 147 70
325 91 −1989 403 546 221 273 130
775 217 403 −4185 1302 527 651 310
1050 294 546 1302 −5208 714 882 420
425 119 221 527 714 −2533 357 170
525 147 273 651 882 357 −3045 210
250 70 130 310 420 170 210 −1560


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Numerical Example: The Number Partitioning Problem

Solving the QUBO gives x = (00011001), yielding perfectly matched
subset sums of 83.

The development employed here can be expanded to address other
forms of the number partitioning problems as discussed in Alidaee,
et.al. (2005)
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§ 3: Creating QUBO Models Using Known Penalties
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Valid Infeasible Penalty (VIP)

A penalty function is a Valid Infeasible Penalty (VIP) if:

It is zero for feasible solutions.
It is positive for infeasible solutions.

Including quadratic VIPs in the objective function for each constraint
yields a transformed QUBO model.
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Creating QUBO using Known Penalties

Many constrained problems can be re-formulated as QUBO models by
introducing quadratic penalties with a positive scalar P.

Table: Simple examples: Known constraint/penalty pairs

Classical Constraint Equivalent Penalty

x + y ≤ 1 P(xy)

x + y ≥ 1 P(1− x − y + xy)

x + y = 1 P(1− x − y + 2xy)

x ≤ y P(x − xy)

x1 + x2 + x3 ≤ 1 P(x1x2 + x1x3 + x2x3)

x = y P(x + y − 2xy)
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QUBO Models for Constrained Problems

Certain types of constraints can be represented by quadratic penalty
functions.

For example, consider binary variables x and y with a constraint
x + y ≤ 1.

A quadratic infeasibility penalty for this constraint is:

Pxy

where P is a large positive scalar.
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§ 3.0.1: Minimum Vertex Cover (MVC) Problem
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Minimum Vertex Cover (MVC) Problem

A vertex cover is a subset of vertices such that every edge is incident
to at least one vertex in the subset.

The Minimum Vertex Cover (MVC) problem seeks to find the
smallest such subset.

The objective is to minimize the number of vertices in the cover.

min
∑
j∈V

xj

xi + xj ≥ 1 for all (i , j) ∈ E
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MVC Penalty Function

The constraints in MVC can be represented by a penalty function:

P(1− x − y + xy)

This transforms the constrained problem into an unconstrained
QUBO model as follows

min H(x) =
∑
j∈V

xj + P

 ∑
(i ,j)∈E

1− xi − xj + xixj


we can write this as minimize xTQx plus a constant term
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MVC Numerical Example

Consider a graph with 6 edges and 5 nodes.

The QUBO model is written as:

minQx =x1 + x2 + x3 + x4 + x5+

P(1− x1 − x2 + x1x2)+

P(1− x1 − x3 + x1x3)+

P(1− x2 − x4 + x2x4)+

P(1− x3 − x4 + x3x4)+

P(1− x3 − x5 + x3x5)+

P(1− x4 − x5 + x45)

where Q is a matrix. Qx can be written as
Qx = (1− 2P)x1 + (1− 2P)x2 + (1− 3P)x3 + (1− 3P)x4 + (1−
2P)x5 + Px1x2 + Px1x3 + Px2x4 + Px3x4 + Px3x5 + Px4x5 + 6P
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MVC Solution Example

Arbitrarily choosing P = 8 and dropping the additive constant gives a
QUBO model, with the Q matrix given by

−15 4 4 0 0
4 −15 0 4 0
4 0 −23 4 4
0 4 4 −23 4
0 0 4 4 −15


The solution to the QUBO model is:

x = (01101), xTQx = −45

The minimum vertex cover consists of nodes 2, 3, and 5.
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Numerical Example

Solving this QUBO model gives: H(x) = xTQx = −45 at
x = (0, 1, 1, 0, 1) for which H(x) = 48− 45 = 3, meaning that a
minimum cover is given by nodes 2, 3, and 5.
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§ 3.0.2: The Set Packing Problem
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The Set Packing Problem

The Set Packing Problem maximizes the number of selected disjoint
subsets.

This can be formulated as:

max
∑

wixi subject to
∑

aijxi ≤ 1

where xi are binary variables, and wi and aij are weights and
coefficients.
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Set Packing as QUBO

By applying penalties, we can reformulate the Set Packing problem as
a QUBO:

maxH(x) = xTQx

where the matrix Q is constructed using penalties for violating the
disjoint constraint.
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Set Packing Numerical Example

Consider a small example of a set packing problem:

max x1 + x2 + x3 + x4

s.t. x1 + x3 + x4 ≤ 1, x1 + x2 ≤ 1

Re-casting as QUBO via the penalties of previous Table.

max x1 + x2 + x3 + x4 − Px1x3 − Px1x4 − Px3x4 − Px1x2

This has our customary QUBO form maxH(x) = xTQx , where the Q
matrix , with P arbitrarily chosen to be 6, is given by

1 −3 −3 −3
−3 1 0 0
−3 0 1 −3
−3 0 −3 1


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Set Packing Numerical Example

The solution of this QUBO model is:

x = (0, 1, 1, 0), y = 2

All penalty terms are equal to zero in the solution.

Remark: Set packing problems with thousands of variables and
constraints have been efficiently reformulated and solved in Alidaee,
et. al. (2008) using the QUBO reformulation illustrated in this
example.
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§ 3.0.3: The Graph Coloring Problem
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The Graph Coloring Problem

Vertex coloring problems seek to assign colors to nodes of a graph
such that adjacent nodes receive different colors.

These problems can be modeled as satisfiability problems as follows:

Let xij = 1 if node i is assigned color j and 0 otherwise.

Each node must be assigned a color, so we have the constraints:

K∑
j=1

xij = 1 for all nodes i

For adjacent nodes i and j , the constraints ensure that they receive
different colors.
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Transformation into QUBO Model

A feasible coloring where adjacent nodes are assigned different colors
is assured by imposing adjacency constraints.

This problem can be recast into a QUBO model using:

Transformation #1 on the node assignment constraints.
Transformation #2 on the adjacency constraints.

The resulting QUBO model is optimized to find the feasible coloring.
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Numerical Example: Graph Coloring with 3 Colors

Consider the problem of finding a feasible coloring of the graph using
K = 3 colors.

The goal is to find a solution to the system:

3∑
j=1

xij = 1 for all adjacent nodes i and j

such that xip + xjp ≤ 1 for p = 1, . . . , 3 for all adjacent nodes i and j .

Graph structure:
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Solving the QUBO Model for Graph Coloring

The problem is formulated as a QUBO problem:

minimize H(x) = xTQx where x is binary
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Solving the QUBO Model for Graph Coloring

Solving this model yields a feasible coloring:

x2 = x4 = x9 = x11 = x15 = 1

with all other variables equal to zero.

In this example, the solution means:

Nodes 1 and 4 get color #2.
Node 2 gets color #1.
Nodes 3 and 5 get color #3.
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§ 4: The Max 2-Sat Problem
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Introduction to Max 2-Sat Problem

Satisfiability problems are used in many settings and represented in
terms of clauses in conjunctive normal form (CNF).

Max 2-Sat problems consist of clauses with two literals, and a clause
is satisfied if either or both literals are true.

The goal is to maximize the number of satisfied clauses.
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Quadratic Penalties for Clause Types

There are three types of clauses in Max 2-Sat, each associated with a
quadratic penalty:

1 No negations: xi ∨ xj

Constraint: xi + xj ≥ 1, Penalty: 1− xi − xj + xixj

2 One negation: xi ∨ x j

Constraint: xi + (1− xj) ≥ 1, Penalty: xj − xixj

3 Two negations: x i ∨ x j

Constraint: (1− xi ) + (1− xj) ≥ 1, Penalty: xixj
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QUBO Model for Max 2-Sat

The problem is recast into a Quadratic Unconstrained Binary
Optimization (QUBO) model by minimizing the number of unsatisfied
clauses.

The penalty function is:

minH(x) = xTQx

Example: A Max 2-Sat instance with 4 variables and 12 clauses gives
the QUBO model:

minH(x) = 3 + x1 − 2x4 − x2x3 + x2x4 + 2x3x4
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QUBO Model for Max 2-Sat

Table: Penalties for the 12 Clauses

Clause # Clause Quadratic Penalty

1 x1 ∨ x2 1− x1 − x2 + x1x2
2 x1 ∨ x2 x2 − x1x2
3 x1 ∨ x2 x1 − x1x2
4 x1 ∨ x2 x1x2
5 x1 ∨ x3 x1 − x1x3
6 x1 ∨ x3 x1x3
7 x2 ∨ x3 x3 − x2x3
8 x2 ∨ x4 1− x2 − x4 + x2x4
9 x2 ∨ x3 x2 − x2x3
10 x2 ∨ x3 x2x3
11 x3 ∨ x4 1− x3 − x4 + x3x4
12 x3 ∨ x4 x3x4
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QUBO Matrix

The QUBO model can be represented in matrix form as:

minH(x) = 3 + xTQx

where the Q matrix is:

Q =


1 0 0 0
0 0 −1

2
1
2

0 −1
2 0 1

0 1
2 1 −2


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Conclusion

Solving the QUBO model minimizes the number of unsatisfied clauses.

Example solution: H(x) = 1 when x1 = x2 = x3 = 0 and x4 = 1,
meaning all but one clause is satisfied.

The QUBO approach is scalable and has been used to solve Max
2-Sat problems with hundreds of variables.
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Remarks on the QUBO Approach

The QUBO model size is independent of the number of clauses and
depends only on the number of variables.

Max 2-Sat problems with hundreds of variables and thousands of
clauses can be efficiently solved using the QUBO approach.
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§ 5: Quantum Algorithms for Optimization
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§ 5.1: Introduction to Quantum Optimization
Algorithms
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Introduction to Quantum Optimization Algorithms

Quantum Optimization Algorithms aim to solve complex
optimization problems by utilizing the principles of quantum
mechanics.

Quantum Adiabatic Optimization (AQO):
A form of optimization where the system evolves slowly from an initial
simple Hamiltonian HB to a final Hamiltonian HP that encodes the
problem solution.
The system stays in its ground state, finding the global minimum,
provided the evolution is slow enough.

Other quantum optimization techniques:

Quantum Annealing (QA): A practical implementation of AQO used
in hardware like D-Wave to solve optimization problems.
Variational Quantum Algorithms (VQA): Combines quantum state
preparation with classical optimization methods (e.g., VQE, QAOA).

Applications: Used for solving problems like Max-Cut, and other
combinatorial optimization problems.
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§ 6: Mapping Optimization Problems to Quantum
Hardware
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QUBO to Ising Model Mapping

QUBO (Quadratic Unconstrained Binary Optimization) is a
mathematical formulation of optimization problems that can be
efficiently mapped to quantum hardware.

Ising Model: A physical model used in quantum systems to represent
binary variables as spins si ∈ {−1, 1}.
Transformation: The mapping of QUBO to the Ising model is done
via the relation:

xi =
1 + si
2

where xi ∈ {0, 1} represents binary variables, and si ∈ {−1, 1}
represents spin variables.
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Significance of the Ising Model in Quantum Hardware

The Ising model serves as a bridge between optimization problems
and quantum systems.

Hamiltonian Formulation: The Ising model is expressed as a
Hamiltonian:

H =
∑
i ,j

Jijsi sj +
∑
i

hi si

where Jij represents the interaction between spins and hi represents
an external magnetic field. Both Jij and hi can be derived in terms of
Qii and Qij .

Substituting si with σ
(i)
z = I2i−1 ⊗ σz ⊗ I2n−i , the Ising problem is

converted to quantum Ising Hamiltonian.
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Ising Hamiltonian

The Hamiltonian is often expressed as an Ising Hamiltonian:

H =
∑
i<j

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i

σz is the Pauli Z operator
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Significance of the Ising Model in Quantum Hardware

Many quantum optimization algorithms, such as Quantum Adiabatic
Optimization, and Quantum Annealing, operate by finding the ground
state of this Ising Hamiltonian.

The Ising model is used in quantum hardware like D-Wave to solve
optimization problems.
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§ 7: Quantum Adiabatic Optimization
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Introduction to Adiabatic Quantum Computation

Quantum computations can be implemented by the adiabatic
evolution of a system’s Hamiltonian.

The system is initialized in the ground state of a simple Hamiltonian
and adiabatically evolved to a Hamiltonian that encodes the solution.

Adiabatic quantum computation (AQC) evolves Hamiltonians rather
than applying quantum gates.
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Adiabatic Theorem & Optimization Algorithm

Adiabatic theorem: A quantum system remains in its ground state if
the Hamiltonian evolves slowly.

Evolution starts with Hinitial, transitioning to Hfinal which encodes the
solution.

System evolution:

H(t) = (1− s(t))Hinitial + s(t)Hfinal

Steps: Initialize in ground state of Hinitial, slowly evolve to Hfinal,
measure to obtain the solution.
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Applications & Real-World Examples & Challenges

Effective in solving NP-hard problems such as Max-Cut, Traveling
Salesman, and Graph Coloring.

Real-world applications: logistics (vehicle routing, supply chain),
finance (portfolio optimization), and machine learning (feature
selection).

Implementations: D-Wave quantum systems perform adiabatic
optimization.

Challenges: Decoherence, noise, scalability, and time constraints (slow
evolution required).

Quantum Adiabatic Optimization October 17, 2024 80 / 130



The Adiabatic Theorem

Schrodinger equation:

iℏ
d

dt
|ψ(t)⟩ = H(t)|ψ(t)⟩

Instantaneous eigenstate:

H(t)|n(t)⟩ = En(t)|n(t)⟩

Initial condition:
|ψ(0)⟩ = |n(0)⟩

If evolution is slow enough, the system remains in its instantaneous
eigenstate.

|ψ(t)⟩ ≈ e iθ(t)|ψ(0)⟩, |ψn(t)⟩ = U(t)|ψ(0)⟩,

UI (t) =
∞∑
q=0

(−1)q
∫ t

0
dtq · · ·

∫ t2

0
dt1HI (tq) · · ·HI (t1)
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Adiabatic Theorem (Born and Folk 1928)

A physical system remains in its instantaneous eigenstate if a given
perturbation is acting on it slowly enough and if there is a gap
between the eigenvalue and the rest of the Hamiltonian’s spectrum.

Under a slowly changing Hamiltonian H(t), with instantaneous
eigenstate |n(t)⟩ and the corresponding energy En(t), a quantum
system evolves from an initial state |n(0)⟩ to the final state |n(t)⟩.

|ψ(0)⟩ =
∑
n

cn(0)|n(0)⟩
Final
===⇒
State

|ψ(t)⟩ =
∑
n

cn(t)|n(t)⟩

cn(t) = cn(0)e
iθn(t)e iγn(t)

Dynamical Phase: θn(t) = −1
ℏ
∫ t
0 En(t

′
)dt

′

Geometrical Phase: γ(t) = i
∫ t
0 ⟨n(t

′
)|ṅ(t ′)⟩dt ′
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Adiabatic Theorem Continued

The rate of change of Hamiltonian dH(t)
dt is small, and there is a finite

gap Em(t)− En(t) ̸= 0 between energies m ̸= n →

⟨n(t ′)|ṅ(t ′)⟩ = −⟨m(t)|Ḣ(t)|n(t)⟩
Em(t)− En(t)

→ 0

|cn(t)|2 = |cn(0)|2 so if the system begins in an eigenstate of H(0), it
remains in an eigenstate of H(t) during the evolution, with a change
of phase only.
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Adiabatic Approximation

H(t)|n(t)⟩ = En(t)|n(t)⟩

Assume m ̸= n and perform the inner product with ⟨m(t)|:

H(t)|m(t)⟩ = Em(t)|m(t)⟩, ⟨m(t)|n(t)⟩

⟨m(t)|ṅ(t)⟩ = −⟨m(t)|Ḣ(t)|n(t)⟩
Em(t)− En(t)

Adiabatic approximation: The rate of change in the Hamiltonian
dH(t)
dt is small, and there is a finite gap Em(t)− En(t).
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Adiabatic Limit

iℏ
∂

∂t
|ψ(t)⟩ = H(t)|ψ(t)⟩ → |ψ(t)⟩ =

∑
n

cn(t)|n(t)⟩

iℏċm(t) + iℏ
∑
n

cn(t)⟨m(t)|ṅ(t)⟩ = cm(t)Em(t)

In the Adiabatic limit ⟨m(t)|n(t)⟩ ≈ 0 for m ̸= n:

iℏċm(t) + iℏcm(t)⟨m(t)|ṁ(t)⟩ = cm(t)Em(t)

ċm(t)

cm(t)
= − i

ℏ
Em(t) + ii⟨m(t)|ṁ(t)⟩
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Adiabatic Limit

In the Adiabatic limit ⟨m(t)|n(t)⟩ ≈ 0 for m ̸= n:

cm(t) = cm(0)e
iθm(t)e iγm(t)

Dynamical phase:

θm(t) = −1

ℏ

∫ t

0
Em(t

′
)dt

′
,

Geometrical phase:

γ(t) = i

∫ t

0
⟨m(t

′
)|ṁ(t

′
)⟩dt ′
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§ 7.1: Quantum Adiabatic Algorithm
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Quantum Adiabatic Algorithm

The Quantum Adiabatic Algorithm (QAA) can be used on a quantum
computer as an optimization method for finding the global minimum
of a classical cost function f : {0, 1}n → R.
The cost function is encoded in a problem Hamiltonian HP , which
acts on the Hilbert space of n spin-12 particles.

HP =
∑

z∈{0,1}n
f (z)|z⟩⟨z |

where for QUBO we have Hp =
∑

i<j Jijσ
z
i σ

z
j +

∑
i hiσ

z
i .
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Initialization

The system is initialized in the ground state of the beginning
Hamiltonian HB :

HB =
n∑

i=1

(
1− σxi

2

)
The ground state of HB is the uniform superposition of computational
basis states:

|ψinit⟩ =
1√
2n

∑
z∈{0,1}n

|z⟩
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Adiabatic Evolution

The system evolves according to:

H(t) = (1− t/T )HB + (t/T )HP

Alternatively, using a parameter s = t/T , we write:

H(s) = (1− s)HB + sHP

Start in the ground state of HB at t = 0 and evolve to t = T , where
the state will be very close to the ground state of HP , which gives the
solution.
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The Size of the Minimum Gap

The minimum gap gmin is defined as:

gmin = min
0≤s≤1

(E1(s)− E0(s))

If gmin > 0, the system evolves adiabatically, and the ground state is
preserved.

To ensure the system evolves correctly, the total evolution time T
must satisfy:

T ≫ E

g2
min

where:

E = max
0≤s≤1

∣∣∣∣⟨1; s|dHds |0; s⟩
∣∣∣∣
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Success Probability

For a problem instance with a unique minimizing string w , the
success probability at time t = T is:

P(T ) = |⟨w |ψ(T )⟩|2
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Conclusion

The strategies presented, including evolving more rapidly, initializing
in excited states, and using modified evolution paths, consistently
increased success probabilities in all hard instances tested.

Future work will involve testing these strategies on larger problem
instances using quantum hardware.
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§ 8: One Qubit Example
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One Qubit Problem Setup

Consider a one-bit problem where the clause is satisfied if z1 = 1.

The problem Hamiltonian is given by:

HP =
1

2
+

1

2
σ
(1)
z

The ground state of HP is |z1 = 1⟩.

One Qubit Example October 17, 2024 95 / 130



The Initial Hamiltonian

The initial Hamiltonian HB is chosen as:

HB =
1

2
− 1

2
σ
(1)
x

The smooth interpolating Hamiltonian H(s) is:

H(s) = (1− s)HB + sHP
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Eigenvalues of the Interpolating Hamiltonian

The eigenvalues of H(s) are given by:

λ±(s) =
1

2

(
1±

√
1− 2s + 2s2

)
These eigenvalues are plotted in the following figure, showing a
modest minimum gap:
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Level Crossing with Symmetry

Suppose we replace HB with:

H ′
B =

1

2
− 1

2
σ
(1)
z

Now H(s) is diagonal in the z-basis for all s, and the eigenvalues
cross at s = 0.5:

λ1 = s, λ2 = 1− s

This symmetry causes a level crossing and a minimum gap of zero.
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Breaking the Symmetry

Adding a small off-diagonal term to break the symmetry:

Hϵ(s) =

(
s ϵ(1− s)

ϵ(1− s) 1− s

)
The minimum gap gmin is now ϵ, ensuring no level crossing.
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§ 9: 2-SAT on a Ring
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2-SAT on a Ring: Problem Setup

Consider an n-bit problem with n clauses, each acting on adjacent
bits.

Clause Cj acts on bits j and j + 1.

The boundary condition is cyclic: bit n + 1 is identified with bit 1.

Clauses can either be ”agree” (00 and 11 are satisfying) or ”disagree”
(01 and 10 are satisfying).

The problem is restricted to an even number of disagree clauses so
that a satisfying assignment exists.
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Satisfying Assignment

Given the list of clauses, constructing the satisfying assignment is
trivial.

If w1,w2, . . . ,wn is a satisfying assignment, so is w1,w2, . . . ,wn.

There are exactly two satisfying assignments.
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Problem Hamiltonian HP

The quantum version of the problem is described by the Hamiltonian:

HP = HC1
12 + HC2

23 + · · ·+ HCn
n1

Each Cj is either an ”agree” or ”disagree” clause.

The ground states of HP are |w1⟩|w2⟩ · · · |wn⟩ and |w1⟩|w2⟩ · · · |wn⟩.
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Transformation of Hamiltonian

Define the unitary transformation:

|z1⟩|z2⟩ . . . |zn⟩ → |z ′1⟩|z ′2⟩ . . . |z ′n⟩

z ′j =

{
zj ifwj = 1

z j ifwj = 0

Under this transformation, HP becomes:

HP = Hagree
12 + Hagree

23 + · · ·+ Hagree
n1
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Initial Hamiltonian HB

We choose the initial Hamiltonian HB as:

HB =
n∑

j=1

(
1− σxj

)
HB is invariant under the transformation described earlier.

The ground state of HB is:

|x = 0⟩ = 1

2n/2

∑
z1,z2,...,zn

|z1z2 . . . zn⟩
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Adiabatic Evolution Hamiltonian

The adiabatic evolution Hamiltonian is given by:

H(s) = (1− s)
n∑

j=1

(1− σxj ) + s
n∑

j=1

1

2
(1− σzj σ

z
j+1)

This Hamiltonian is diagonalized in the space of symmetric states.
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Fermion Operator Transformation

Define the fermion operators for j = 1, . . . , n:

bj = σx1σ
x
2 . . . σ

x
j−1σ

−
j

b†j = σx1σ
x
2 . . . σ

x
j−1σ

+
j

These operators satisfy the anticommutation relations:

{bj , b†k} = δjk , {bj , bk} = 0
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Ground State Energy and Gap

The ground state energy E−(s) is given by:

E−(s) = 2− s −
√

(2− 3s)2 + 4s(1− s)(1− cos(πp/n))

The minimum gap occurs at s = 2/3 and is:

gmin ≈ 4π

3n

The required evolution time T scales as T ∼ n3.
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Conclusion

Quantum adiabatic evolution successfully solves the 2-SAT problem
on a ring.

The evolution time T scales polynomially with n, specifically T ∼ n3.

This method is generalizable to other simple problems with structured
constraints.
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Level Repulsion

The phenomenon of level repulsion ensures that in typical systems,
level crossings are avoided.

This behavior is common in more complicated systems.

For small ϵ, the gap gmin prevents crossing, ensuring adiabatic
evolution.
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§ 10: Adiabatic Quantum Computation & Deutsch’s
Algorithm

Adiabatic Quantum Computation & Deutsch’s Algorithm October 17, 2024 111 / 130



Introduction

Quantum computation harnesses the principle of superposition in
quantum mechanics for enhanced efficiency in problem-solving.

Deutsch’s algorithm is one of the earliest quantum algorithms,
determining whether a function f : {0, 1} → {0, 1} is constant or
balanced.

The four possible outcomes for f are:

f (0) = f (1) = 0 (constant)
f (0) = f (1) = 1 (constant)
f (0) = 0, f (1) = 1 (balanced)
f (0) = 1, f (1) = 0 (balanced)
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Adiabatic Quantum Computation

Adiabatic quantum computation replaces quantum gates with a
Hamiltonian that evolves continuously with time.

The system remains in its ground state throughout the evolution.

Hamiltonians H0 and H1 are defined as:

H0 = I − |ψ0⟩⟨ψ0| and H1 = I − |ψ1⟩⟨ψ1|

where

|ψ0⟩ =
1√
2
(|0⟩+ |1⟩)

and
|ψ1⟩ = α|0⟩+ β|1⟩
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Coefficients α and β

The coefficients α and β are defined as:

α =
1

2

∣∣∣(−1)f (0) + (−1)f (1)
∣∣∣

β =
1

2

∣∣∣(−1)f (0) − (−1)f (1)
∣∣∣

If f is constant, α = 1 and β = 0.

If f is balanced, α = 0 and β = 1.
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Time-Dependent Hamiltonian

The time-dependent Hamiltonian is defined as:

H(t) = (1− s(t))H0 + s(t)H1

where s(t) is a function of time such that s(0) = 0 and s(T ) = 1.

The system evolves adiabatically from the ground state of H0 to the
ground state of H1.
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Eigenvalues of the Hamiltonian

The matrix elements of H(s) in the basis {|0⟩, |1⟩} are:

H(s) =

(
1/2 + s(β − 1/2) −1/2(1− s)

−1/2(1− s) 1/2 + s(α− 1/2)

)
The corresponding eigenvalues are:

E±(s) =
1

2

(
1±

√
1− 2s + 2s2

)
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Evolution Time Estimate

The minimum gap occurs at s = 1/2, and the minimum evolution
time T is bounded by:

T ≥ 1

ϵ

where ϵ is the desired accuracy.

For an accuracy of 90%, the minimum time is approximately T ≈ 4.4.
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Example - Grover’s Search
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Introduction to Adiabatic Grover Algorithm

Similar to the circuit model Grover algorithm, the objective is to find
the marked item in an unsorted database of N items with the fewest
queries.

Formally, one is allowed to call a function f : {0, 1}n → {0, 1}, where
N = 2n, with the promise that f (m) = 1 for the marked item m and
f (x) = 0 for all x ̸= m.
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Hamiltonian Setup

The final Hamiltonian is H1 = I − |m⟩⟨m|, where |m⟩ is the marked
state.

The initial Hamiltonian is H0 = I − |ϕ⟩⟨ϕ|, where |ϕ⟩ is the uniform
superposition state:

|ϕ⟩ = 1√
N

N−1∑
i=0

|i⟩

The time-dependent Hamiltonian is:

H(s) = (1− A(s))H0 + A(s)H1

where A(s) = s for a linear schedule.
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Evolution in the Two-Dimensional Subspace

The evolution is restricted to the subspace spanned by |m⟩ and |m⊥⟩,
where:

|m⊥⟩ = 1√
N − 1

∑
i ̸=m

|i⟩

In this subspace, the Hamiltonian can be written as:

H(s) =
1

2
I2×2 −

∆(s)

2

(
cos θ(s) sin θ(s)
sin θ(s) − cos θ(s)

)
where ∆(s) is the gap and θ(s) is defined by:

cos θ(s) =
1− 2s

∆(s)
, sin θ(s) =

2s
√
N − 1

∆(s)
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Eigenvalues and Minimum Gap

The eigenvalues in the two-dimensional subspace are:

ϵ0(s) =
1

2
(1−∆(s)), ϵ1(s) =

1

2
(1 + ∆(s))

The minimum gap occurs at s = 1
2 and scales as:

∆min =
1√
N

= 2−n/2
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Adiabatic Condition

The adiabatic condition requires that the total runtime tf satisfies:

tf ≫ 2max
s

∥Ḣ(s)∥
∆2(s)

For the Grover problem, this results in a runtime scaling as
tf ∼ O(

√
N), matching the circuit model Grover’s algorithm.

Adiabatic Quantum Computation & Deutsch’s Algorithm October 17, 2024 123 / 130



Multiple Marked States

The results generalize to the case where there are M ≥ 1 marked
states.

The final Hamiltonian is:

H1 = I −
∑
m∈M

|m⟩⟨m|

The system evolves in an M + 1 dimensional subspace.

The minimum gap is:

∆(s) = 1− 2s2 +
4M

N
s(1− s)
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§ 11: Quantum Annealing
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Quantum Annealing: Introduction

Quantum Annealing is a quantum algorithm designed to solve
optimization problems by evolving a quantum system towards its
ground state.

It is especially useful for solving combinatorial optimization problems.

Compares closely with simulated annealing but leverages quantum
superposition and tunneling to escape local minima more efficiently.
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How Quantum Annealing Works (vs. Simulated Annealing)

Simulated Annealing:

Classical algorithm that mimics the annealing process in physics to find
the global minimum.
Uses thermal fluctuations to escape local minima.

Quantum Annealing:

Uses quantum tunneling to move through energy barriers, potentially
escaping local minima more efficiently.
Explores many solutions simultaneously due to superposition.

Advantage: Quantum tunneling allows exploration of regions that
classical algorithms may not reach efficiently.
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Adiabatic Evolution in Quantum Annealing

The core principle behind quantum annealing is adiabatic evolution,
ensuring that the system reaches the minimum energy state.
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Real-World Examples of Quantum Annealing

D-Wave Systems: The most well-known quantum annealer, used to
solve optimization problems in various industries.

Applications:

Logistics: Vehicle routing, supply chain optimization.
Finance: Portfolio optimization.
Artificial Intelligence: Feature selection and machine learning model
training.

D-Wave has demonstrated significant performance in specific types of
optimization tasks.
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Thank You!
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