

Shor's Algorithm for Cryptanalysis

Mohammad Sabokdast

October 2024

RSA Cryptography

RSA Cryptography

RSA Applications

Secure Web Browsing (SSL/TLS): RSA is commonly used in securing HTTPS connections. When you visit a website with "https://", RSA may be part of the process that encrypts the communication between your browser and the website.

Email Encryption: RSA can be used to encrypt emails, ensuring that only the intended recipient can read the contents. Technologies like PGP (Pretty Good Privacy) use RSA for this purpose.

Digital Signatures: RSA is used in creating digital signatures that verify the authenticity and integrity of a message, software, or document. Digital signatures help confirm that a message has not been altered and was sent by the claimed sender.

Secure Software Distribution: RSA can be used to verify that software being installed comes from a legitimate source, protecting against malicious software.

VPNs and Secure Communication Protocols: Virtual Private Networks (VPNs) and other secure communication channels often use RSA as part of their encryption process to ensure secure data transmission.

Cryptographic Tokens and Smart Cards: RSA is used in various hardware security tokens and smart cards, ensuring authentication and secure access to systems.

Blockchain and Cryptocurrencies: RSA is occasionally used for secure communication or signatures in some blockchain-related technologies.

$$n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$$
$$\varphi(n) = \prod_{j=1}^k p_j^{\alpha_j - 1} (p_j - 1).$$

Theorem : Suppose a is co-prime to n. Then $a^{\varphi(n)} \equiv 1 \pmod{n}$.

- (1) Select two large prime numbers, p and q.
- (2) Compute the product $n \equiv pq$.
- (3) Select at random a small odd integer, e, that is relatively prime to $\varphi(n) = (p-1)(q-1)$.
- (4) Compute d, the multiplicative inverse of e, modulo $\varphi(n)$.
- (5) The RSA public key is the pair P = (e, n). The RSA secret key is the pair S = (d, n).

$$E(M) = M^{e} \pmod{n}.$$

$$E(M) \rightarrow D(E(M)) = E(M)^{d} \pmod{n}.$$

$$D(E(M)) = E(M)^{d} \pmod{n}$$

$$= M^{ed} \pmod{n}$$

$$= M^{1+k\varphi(n)} \pmod{n}$$

$$= M \cdot M^{k\varphi(n)} \pmod{n}$$

$$= M(\mod{n}),$$

RSA Example

Alice wants to send message M = 104 to Bob. Bob chooses two prime numbers, p and qFor example p = 17 and q = 41. Bob calculates n = pq = 697. Bob computes $\phi(n) = (p-1)(q-1)$ in our example: $\phi(697) = (17 - 1)(41 - 1) = 640$ Bob chooses two number e and d such that $ed = 1 \pmod{640}$ For example e = 3 and d = 427 work. (3 * 427 = 1281). Bob *publishes* n and e. Alice calculate $C = M^{e} \pmod{n} = 104^{3} \pmod{697} = 603$ Alice sends C to Bob. He computes $C^d \pmod{n} = 603^{427} \pmod{697} = (104^3)^{427} \pmod{697}$ $= 104^{1281} \pmod{697} = 104^{1}$ With $104^{640} = 1 \pmod{697}$ because $M^{\phi(n)} = 1 \pmod{n}$

POLLARD-RHO(n)

1
$$i = 1$$

2 $x_1 = \text{RANDOM}(0, n - 1)$
3 $y = x_1$
4 $k = 2$
5 while TRUE
6 $i = i + 1$
7 $x_i = (x_{i-1}^2 - 1) \mod n$
8 $d = \gcd(y - x_i, n)$
9 $\text{if } d \neq 1 \text{ and } d \neq n$
10 $print d$
11 $\text{if } i == k$
12 $y = x_i$
13 $k = 2k$

Order Finding And Factoring

Order Finding And Factoring

Theorem : Suppose N is a composite number L bits long, and x is a non-trivial solution to the equation $x^2 = 1 \pmod{N}$ in the range $1 \le x \le N$, that is, neither $x = 1 \pmod{N}$ nor $x = N - 1 = -1 \pmod{N}$. Then at least one of gcd(x - 1, N) and gcd(x + 1, N) is a non-trivial factor of N that can be computed using $O(L^3)$ operations.

For example: N = 35, x = 6 $x^2 = 36 = 1 \pmod{35}$ x - 1 = 5, x + 1 = 7

Suppose N is a positive integer, and x is co-prime to N, $1 \le x < N$. The order of x modulo N is defined to be the least positive integer r such that $x^r = 1 \pmod{N}$. The order-finding problem is to determine r, given x and N.

Theorem Suppose $N = p_1^{\alpha_1} \cdots p_m^{\alpha_m}$ is the prime factorization of an odd composite positive integer. Let x be chosen uniformly at random from \mathbb{Z}_N^* , and let r be the order of x, modulo N. Then

$$p(r \text{ is even and } x^{r/2} \neq -1 \pmod{N}) \ge 1 - \frac{1}{2^m}$$

Order Finding And Factoring

- (1) If N is even, return the factor 2.
- (2) determine whether $N = a^b$ for integers $a \ge 1$ and $b \ge 2$, and if so return the factor a.
- (3) Randomly choose x in the range 1 to N − 1. If gcd(x, N) > 1 then return the factor gcd(x, N).
- (4) Use the order-finding subroutine to find the order r of x, modulo N.
- (5) If r is even and x^{r/2} ≠ -1(mod N) then compute gcd(x^{r/2} 1, N) and gcd(x^{r/2} + 1, N), and test to see which is a non-trivial factor, returning that factor. Otherwise, the algorithm fails.

Shor's Quantum Algorithm For Order Finding

The quantum algorithm for order-finding is just the phase estimation algorithm applied to the unitary operator

 $U|y\rangle \equiv |xy(\text{mod }N)\rangle\,,$

$$|u_s\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp\left[\frac{-2\pi i s k}{r}\right] |x^k \mod N\rangle,$$

$$U|u_s\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp\left[\frac{-2\pi i s k}{r}\right] |x^{k+1} \mod N\rangle$$
$$= \exp\left[\frac{2\pi i s}{r}\right] |u_s\rangle.$$

Shor's Quantum Algorithm For Order Finding

Algorithm: Quantum order-finding

Inputs: (1) A black box $U_{x,N}$ which performs the transformation $|j\rangle|k\rangle \rightarrow |j\rangle|x^{j}k \mod N\rangle$, for x co-prime to the L-bit number N, (2) $t = 2L + 1 + \lceil \log (2 + \frac{1}{2\epsilon}) \rceil$ qubits initialized to $|0\rangle$, and (3) L qubits initialized to the state $|1\rangle$.

Outputs: The least integer r > 0 such that $x^r \equiv 1 \pmod{N}$.

Runtime: $O(L^3)$ operations. Succeeds with probability O(1).

Shor's Quantum Algorithm For Order Finding

1. $|0\rangle|1\rangle$ 2. $\rightarrow \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} |j\rangle |1\rangle$ $\to \frac{1}{\sqrt{2^t}} \sum_{i=0}^{2^t-1} |j\rangle |x^j \bmod N\rangle$ 3. $\approx \frac{1}{\sqrt{r2^t}} \sum_{s=0}^{r-1} \sum_{j=0}^{2^t-1} e^{2\pi i s j/r} |j\rangle |u_s\rangle$ $\rightarrow \frac{1}{\sqrt{r}} \sum_{s \neq r} |\widetilde{s/r}\rangle |u_s\rangle$ 4. $\rightarrow \widetilde{s/r}$ 5. **6**. $\rightarrow r$

initial state

create superposition

apply $U_{x,N}$

apply inverse Fourier transform to first register

measure first register

apply continued fractions algorithm

Thank You

For Your Attention

