

Shor's Algorithm for Cryptanalysis

Mohammad Sabokdast

October 2024

RSA Cryptography

RSA Cryptography

RSA Applications

Secure Web Browsing (SSL/TLS): RSA is commonly used in securing HTTPS connections. When you visit a website with "https://", RSA may be part of the process that encrypts the communication between your browser and the website.

Email Encryption: RSA can be used to encrypt emails, ensuring that only the intended recipient can read the contents. Technologies like PGP (Pretty Good Privacy) use RSA for this purpose.

Digital Signatures: RSA is used in creating digital signatures that verify the authenticity and integrity of a message, software, or document. Digital signatures help confirm that a message has not been altered and was sent by the claimed sender.

Secure Software Distribution: RSA can be used to verify that software being installed comes from a legitimate source, protecting against malicious software.

VPNs and Secure Communication Protocols: Virtual Private Networks (VPNs) and other secure communication channels often use RSA as part of their encryption process to ensure secure data transmission.

Cryptographic Tokens and Smart Cards: RSA is used in various hardware security tokens and smart cards, ensuring authentication and secure access to systems.

Blockchain and Cryptocurrencies: RSA is occasionally used for secure communication or signatures in some blockchain-related technologies.

$$
n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}
$$

$$
\varphi(n) = \prod_{j=1}^k p_j^{\alpha_j - 1}(p_j - 1).
$$

: Suppose *a* is co-prime to *n*. Then $a^{\varphi(n)} = 1 \pmod{n}$. *Theorem*

- (1) Select two large prime numbers, p and q .
- Compute the product $n \equiv pq$. (2)
- (3) Select at random a small odd integer, e , that is relatively prime to $\varphi(n) = (p-1)(q-1).$
- (4) Compute d, the multiplicative inverse of e, modulo $\varphi(n)$.
- (5) The RSA public key is the pair $P = (e, n)$. The RSA secret key is the pair $S = (d, n).$

$$
E(M) = Me (mod n).
$$

\n
$$
E(M) \rightarrow D(E(M)) = E(M)d (mod n).
$$

\n
$$
D(E(M)) = E(M)d (mod n)
$$

\n
$$
= Me (mod n)
$$

\n
$$
= M \cdot Mk\varphi(n) (mod n)
$$

\n
$$
= M (mod n),
$$

RSA Example

Alice wants to send message $M = 104$ to Bob. Bob chooses two prime numbers, p and q For example $p = 17$ and $q = 41$. Bob calculates $n = pq = 697$. Bob computes $\phi(n) = (p-1)(q-1)$ in our example: $\phi(697) = (17 - 1)(41 - 1) = 640$ Bob chooses two number e and d such that $ed = 1 \pmod{640}$ For example $e = 3$ and $d = 427$ work. ($3 * 427 = 1281$). Bob *publishes* n and e. Alice calculate $C = M^e \pmod{n} = 104^3 \pmod{697} = 603$ Alice sends C to Bob. He computes $C^d \pmod{n} = 603^{427} \pmod{697} = (104^3)^{427} \pmod{697}$ $= 104^{1281}$ (mod 697) = 104¹ With $104^{640} = 1 \ (mod 697)$ because $M^{\phi(n)} = 1 \ (mod n)$

 $POLLARD-RHO(n)$

1
$$
i = 1
$$

\n2 $x_1 = \text{RANDOM}(0, n - 1)$
\n3 $y = x_1$
\n4 $k = 2$
\n5 while TRUE
\n6 $i = i + 1$
\n7 $x_i = (x_{i-1}^2 - 1) \text{ mod } n$
\n8 $d = \text{gcd}(y - x_i, n)$
\n9 if $d \neq 1$ and $d \neq n$
\n10 if $i = k$
\n12 $y = x_i$
\n13 $k = 2k$

Order Finding And Factoring

Order Finding And Factoring

: Suppose N is a composite number L bits long, and x is a non-trivial *Theorem* solution to the equation $x^2 = 1 \pmod{N}$ in the range $1 \le x \le N$, that is, neither $x = 1 \pmod{N}$ nor $x = N - 1 = -1 \pmod{N}$. Then at least one of $gcd(x - 1, N)$ and $gcd(x + 1, N)$ is a non-trivial factor of N that can be computed using $O(L^3)$ operations.

For example: $N = 35, x = 6$ $x^2 = 36 = 1 \ (mod \ 35)$ $x - 1 = 5, x + 1 = 7$

Suppose N is a positive integer, and x is co-prime to N, $1 \le x \le N$. The *order* of x modulo N is defined to be the least positive integer r such that $x^r = 1 \pmod{N}$. The *order-finding problem* is to determine r, given x and N.

Suppose $N = p_1^{\alpha_1} \cdots p_m^{\alpha_m}$ is the prime factorization of an odd Theorem composite positive integer. Let x be chosen uniformly at random from \mathbb{Z}_N^* , and let r be the order of x, modulo N. Then

$$
p(r \text{ is even and } x^{r/2} \neq -1 \text{ (mod } N)) \geq 1 - \frac{1}{2^m}
$$

Order Finding And Factoring

- (1) If N is even, return the factor 2.
- (2) determine whether $N = a^b$ for integers $a \ge 1$ and $b \ge 2$, and if so return the factor a.
- (3) Randomly choose x in the range 1 to $N-1$. If $gcd(x, N) > 1$ then return the factor $gcd(x, N)$.
- (4) Use the order-finding subroutine to find the order r of x, modulo N.
- (5) If r is even and $x^{r/2} \neq -1$ (mod N) then compute $gcd(x^{r/2} 1, N)$ and $gcd(x^{r/2} + 1, N)$, and test to see which is a non-trivial factor, returning that factor. Otherwise, the algorithm fails.

Shor's Quantum Algorithm For Order Finding

The quantum algorithm for order-finding is just the phase estimation algorithm applied to the unitary operator

 $U|y\rangle \equiv |xy \pmod{N} \rangle$,

$$
u_s\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp\left[\frac{-2\pi i sk}{r}\right] |x^k \bmod N\rangle,
$$

$$
U|u_s\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp\left[\frac{-2\pi i sk}{r}\right] |x^{k+1} \text{ mod } N\rangle
$$

$$
= \exp\left[\frac{2\pi i s}{r}\right] |u_s\rangle.
$$

Shor's Quantum Algorithm For Order Finding

Algorithm: Quantum order-finding

Inputs: (1) A black box $U_{x,N}$ which performs the transformation $|j\rangle|k\rangle \rightarrow |j\rangle|x^{j}k \mod N\rangle$, for x co-prime to the L-bit number N, (2) $t = 2L + 1 + \left[\log\left(2 + \frac{1}{2\epsilon}\right)\right]$ qubits initialized to $|0\rangle$, and (3) L qubits initialized to the state $|1\rangle$.

Outputs: The least integer $r > 0$ such that $x^r = 1 \pmod{N}$.

Runtime: $O(L^3)$ operations. Succeeds with probability $O(1)$.

Shor's Quantum Algorithm For Order Finding

1. $|0\rangle|1\rangle$ 2. $\longrightarrow \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} |j\rangle |1\rangle$ 3. $\longrightarrow \frac{1}{\sqrt{2^t}} \sum_{i=0}^{2^t-1} |j\rangle |x^j \mod N\rangle$ $\approx \frac{1}{\sqrt{r2^t}} \sum_{s=0}^{r-1} \sum_{j=0}^{2^t-1} e^{2\pi i s j/r} |j\rangle |u_s\rangle$ $\rightarrow \frac{1}{\sqrt{r}}\sum_{r=0}^{r-1} |\widetilde{s/r}\rangle |u_s\rangle$ 4. $\rightarrow \widetilde{s/r}$ 5. 6. $\rightarrow r$

initial state

create superposition

apply $U_{x,N}$

apply inverse Fourier transform to first register

measure first register

apply continued fractions algorithm

Thank You

For Your Attention

